——— АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ ——— И ПРОИЗВОДСТВАМИ

VДК 504.7 Научная статья

DOI: 10.35330/1991-6639-2023-6-116-13-20

EDN: AWSYFQ

Система учета баланса CO₂ в цикле «почва – растение – атмосфера»*

Ю. К. Альтудов, З. И. Дударов, А. Х. Занилов

Кабардино-Балкарский государственный университет им. Х. М. Бербекова 360004, Россия, г. Нальчик, ул. Чернышевского, 173

Аннотация. Оценка направленности трансформации углерода в биоцикле «почва – растение – атмосфера» по причине высокой динамичности процессов в агроэкосистеме представляет собой сложную методологическую задачу. По этой причине создание соответствующего инструментария отвечает целям управления процессами поглощения СО₂ компонентами агроэкосистем и создания соответствующих технологий для агроклиматических проектов. Рассмотренная в работе система на основе модельного эксперимента, длившегося более 20 суток, позволила рассчитать баланс СО₂-эквивалента, образовавшийся в смоделированной агроэкосистеме, с точностью более 95 %. Это позволяет использовать данную систему для определения уровня биологической активности почвы, степени автотрофности питания растений и определения объема СО₂, извлекаемого почвой и растениями из атмосферы.

Ключевые слова: парниковые газы, диоксид углерода, баланс CO₂, почва, растение, атмосфера

Поступила 17.11.2023, одобрена после рецензирования 21.11.2023, принята к публикации 01.12.2023

Для цитирования. Альтудов Ю. К., Дударов З. И., Занилов А. Х. Система учета баланса CO_2 в цикле «почва – растение – атмосфера» // Известия Кабардино-Балкарского научного центра РАН. 2023. № 6(116). С. 13–20. DOI: 10.35330/1991-6639-2023-6-116-13-20

MSC: 92Cxx; 92C80 Original article

System for accounting for CO₂ balance in the "soil – plant – atmosphere" cycle*

Yu.K. Altudov, Z.I. Dudarov, A.Kh. Zanilov

Kabardino-Balkarian State University named after Kh.M. Berbekov 360004, Russia, Nalchik, 173 Chernyshevsky street

Abstract. Assessment of the direction of carbon transformation in the "soil – plant – atmosphere" biocycle is a complex methodological task due to the high dynamics of processes in the agroecosystem. For this reason the creation of appropriate tools meets the goals of managing the processes of CO₂ absorption by components of agroecosystems and creation of appropriate technologies for agroclimatic projects. The system considered in the work, based on a model

 $^{\ ^{\}circ}$ Альтудов Ю. К., Дударов З. И., Занилов А. Х., 2023

^{*} Работа выполнена в рамках государственного задания Минобрнауки РФ, мнемокод 0669-2020-0008

^{*} The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, mnemonic code 0669-2020-0008

experiment that lasted more than 20 days, made it possible to calculate the balance of CO_2 equivalent formed in the simulated agroecosystem with an accuracy of more than 95 %. This makes it possible to use this system to determine the level of biological activity of the soil, the degree of autotrophy of plant nutrition and determine the volume of CO_2 extracted by soil and plants from the atmosphere.

Keywords: greenhouse gases, carbon dioxide, CO2 balance, soil, plant, atmosphere

Submitted 17.11.2023,

approved after reviewing 21.11.2023,

accepted for publication 01.12.2023

For citation. Altudov Yu.K., Dudarov Z.I., Zanilov A.Kh. System for accounting for CO₂ balance in the "soil – plant – atmosphere" cycle. *News of the Kabardino-Balkarian Scientific Center of RAS*. 2023. No. 6(116). Pp. 13–20. DOI: 10.35330/1991-6639-2023-6-116-13-20

Введение

В современных условиях усиления роли климатической повестки как фактора влияния на мировую экономику ключевое значение приобретают достоверные методы учета баланса парниковых газов, в частности диоксида углерода.

Углекислый газ, являясь эталонным и самым распространенным парниковым газом, избыточность в атмосфере которого сопряжена с риском глобального потепления, выступает в свою очередь и в качестве важнейшего элемента любой живой системы, включая микроорганизмы, растения и почву. Следовательно, цели и задачи декарбонизации различных отраслей экономики должны отвечать интересам поддержания оптимального режима трансформации СО₂ между компонентами локальных экосистем.

В настоящее время предложено множество способов утилизации CO₂, среди которых традиционно значительное внимание уделяется лесоклиматическим проектам. Важно обозначить парадоксальность ситуации с использованием лесов в борьбе с выбросами парниковых газов. В периоды интенсивных пожаров леса из стоков диоксида углерода превращаются в его источник.

Из технологических способов связывания углекислого газа рассматриваются системы сбора и абсорбции парниковых газов [1, 2], переработки CO₂ с подачей в зону кавитации воды [3], геологического захоронения [4].

Менее всего в России распространены практики утилизации в сельском хозяйстве. Тем не менее все чаще звучат предложения по вовлечению сельскохозяйственных угодий в климатические проекты. В частности, интенсивный сценарий реализации Стратегии социально-экономического развития РФ с низким уровнем выбросов парниковых газов до 2050 г. предусматривает использование поглощающей способности почв в качестве поглотителей углекислого газа [http://government.ru/docs/43708/]. На конференции ООН по изменению климата (Глазго, 2021) была представлена Декларация о продуктах питания и климата, в которой также было предложено использовать сельскохозяйственные земли в качестве поглотителей СО₂.

Из всех обозначенных способов развитие технологий карбонового земледелия является наименее затратным с финансовой точки зрения вектором борьбы с выбросами парниковых газов. Потенциальная высокая эффективность обусловливается содержанием в 3-метровом слое почвы 1500 Гт органического углерода [5], из которых более 35 % утрачено с момента масштабной интенсификации сельскохозяйственного производства [6]. Но возвращаясь к значению углекислого газа в качестве незаменимого источника питания растений, следует учесть, что депонирование, то есть долгосрочное связывание углеро-

да, не отвечает целям повышения продуктивности сельскохозяйственных культур. Соответственно, возникает вопрос: каким образом, развивая технологии поглощения углерода почвами, достичь снижения концентрации CO₂ в атмосфере и при этом обеспечить оптимальное его содержание для процесса фотосинтеза? Ответ заключается в умелом управлении не только высшими растениями, но и деятельностью микроорганизмов [7]. Стимулируя закрепление накопленного CO₂ в растительных остатках и микроорганизмов в почве в агрономически пассивный период и создавая условия для его высвобождения по мере роста и развития растений, можно достичь круговорота CO₂, когда только выделившись из почвы, он перехватывается активно фотосинтезирующими частями растений. В таком случае углерод по большей части остается закрепленным, что существенно сокращает период его нахождения в атмосфере.

Для оценки эффективности разрабатываемых технологий и отдельных приемов секвестрации углерода в агроэкосистеме требуется качественная система наблюдения за направленностью процессов трансформации диоксида углерода между основными компонентами агроэкосистемы — почвой, растением и атмосферой.

С этой целью нами разработано устройство [8] для учета и моделирования круговорота углекислого газа в биоцикле «почва – растение – атмосфера». Общий вид системы представлен на рис. 1. Устройство герметически изолировано, за счет чего исключается влияние внешних факторов на изучаемые параметры при проведении эмпирических лабораторных исследований.

Рис. 1. Общий вид системы учета баланса CO_2 в биоцикле «почва – растение – атмосфера»

Fig. 1. General view of the system for accounting for the CO₂ balance in the biocycle "soil – plant – atmosphere"

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ

Устройство путем контроля и регулирования основных абиотических параметров в закрытом биоцикле «почва – растение – атмосфера» позволяет учитывать направленность трансформационных процессов и моделировать круговорот диоксида углерода.

Система оснащена сенсорами, которые контролируют и регулируют общую концентрацию углекислого газа (CO_2), температуру (T) и влажность (Rh) воздуха внутри устройства, объемное содержание кислорода (O_2), объемную влажность почвы (Wn), освещенность системы для поддержания светового режима роста растений. На рисунке 2 и в таблице 1 представлены структурная схема устройства и технические характеристики используемых измерительных средств.

Таблица 1. Технические характеристики системы

Table 1. System specifications

Измеряемый параметр	Единица измерения	Диапазон измерений	Дополнительные параметры
Углекислый газ (CO ₂)	ppm	400–5000	Погрешность определения ± 30 ppm + 3 % от измеряемой величины
Кислород (O ₂)	%	0–30	Абсолютная погрешность измерения при температуре окружающей среды $20~^{\circ}\text{C}$ составляет $\pm~0.4~\%$. USB/RS $-~232$ интерфейс для связи с ПК
Температура (T)	°C	от 0 до +50	Точность определения ± 0.5 °C
Влажность воздуха (Rh)	%	20–80	Погрешность измерения ± 5 %.
Освещенность (E)	Lux (Лк)	1–200000	Спектральный диапазон измерения 0,38 – 0,78 мкм Погрешность измерения не более 5 %. USB интерфейс для связи с ПК
Объемная влажность почвы (Wn)	%	0–100	Точность определения \pm 1.5 %. USB интерфейс для связи с ПК

Контроль концентрации CO_2 , влажности (Rh) и температуры (T) воздуха осуществляется через единый блок с соответствующими сенсорами, взаимодействующий по протоколу LoRaWAN с контроллером микроклимата, который подключен к интернету и облачному сервису. Параметры контролируются в режиме реального времени с возможностью получения уведомлений в случае отклонения от заданных опытных значений. В системе концентрация углекислого газа определяется по недисперсионной инфракрасной технологии (NDIR) с функцией Automatic Baseline Correction для автоматической калибровки без использования технических газов. С заранее заданной периодичностью через соответствующие контроллеры и блоки управления фиксируемые показатели передаются на узел сбора данных для хранения, обработки и визуализации (рис. 2). Вспомогательные сенсоры (O_2 , Wn, E, T) используются для принятия решений с целью создания благоприятных условий для растений и моделирования циклов, близких к реальному.

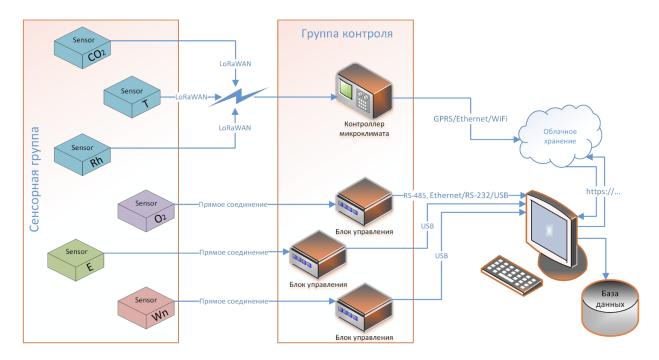
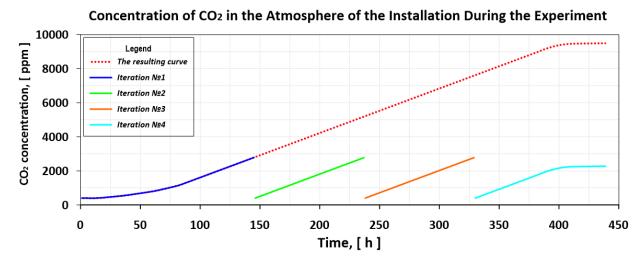



Рис. 2. Структурная схема системы

Fig. 2. Block diagram of the system

При имитации различных климатических условий внутри устройства может происходить рост концентрации CO_2 и влажности воздуха, превышающий критические значения для развития растений и регистрационные возможности сенсоров. Для этого в устройство адаптирована подсистема оптимизации, которая позволяет принудительно утилизировать, т.е. извлекать избыточную концентрацию углекислого газа и влаги, после чего запускается следующая итерация. Суммарная концентрация углекислого газа в системе за весь исследовательский цикл определяется путем сложения соответствующих каждой итерации значений CO_2 , как показано на рис. 3.

Рис. 3. Определение суммарной концентрации диоксида углерода в атмосфере системы во время эксперимента

Fig. 3. Determination of the total concentration of carbon dioxide in the atmosphere of the system during the experiment

Схема эксперимента и полученные результаты

В настоящей работе апробация устройства проводилась при выращивании ярового ячменя с использованием 800 грамм воздушно-сухой почвы, доведенной до влажности 60 % наименьшей влагоемкости, в которой до начала исследований содержание углерода определялось на элементарном анализаторе Multi-EA200CS. После высева семян лоток с почвой помещается в бокс и герметично закрывается. За счет почвенного дыхания, которое высвобождает углерод из почвы в виде СО2, внутри бокса наблюдается увеличение его концентрации. Часть углекислого газа усваивается растениями из атмосферы устройства и преобразуется в органические соединения в процессе фотосинтеза. Общая концентрация СО2 в устройстве зависит от активности почвенного дыхания, которое напрямую связано с микробиологической активностью почвы и с общим содержанием органического вещества в ней. Наблюдение проводится до тех пор, пока показатель СО2 атмосферы в боксе не выйдет на плато, что соответствует максимальной концентрации и сохраняется без дальнейшего роста на протяжении 12 часов. Опытным путем установлено, что в зависимости от типа используемой почвы и растений данный эффект достигается через 18-21 день. Общий баланс (Б) углекислого газа в биоцикле «почва – растение – атмосфера» рассчитывается в абсолютных величинах по следующей формуле:

$$E = (C_{noug.} + C_{cemena}) - (C_{pacm} + C_{ammoc\phi}),$$

где $C_{noч6}$. — разница содержания углерода в почве до и после эксперимента; $C_{ceмeнa}$ — содержание углерода в семенах; C_{pacm} — содержание углерода в растениях (в сухой биомассе) и $C_{ammoc\phi}$ — содержание CO_2 -эквивалента в атмосфере устройства.

До начала эксперимента содержание элементарного углерода в органической форме в почве составляло 2 %, что соответствует 16 г почвенного углерода и эквивалентно 58,6 г СО₂. По завершении наблюдений в почве оставалось 1,88 %, равных 15,04 г углерода и соответствующих 55,04 г СО₂-эквивалента. Разница до и после эксперимента 0,12 % соответствовала 3,56 г СО₂-эквивалента. При массе 1000 семян ячменя, равной 39 г, и содержании в них углерода 40 % в почву поступило 2,85 г СО₂-эквивалента при посеве 50 семян. При этом была получена биомасса растений (корни и надземная часть) с содержанием углерода 76 %, что равно 1,9 г абсолютной сухой массы, равной 5,2 г СО₂-эквивалента. В результате сопоставления данных получено, что сумма разниц СО₂-эквивалента почвы (3,56 г) и семян (2,85 г), равная 6,41 г СО₂-эквивалента, сопоставима с суммой СО₂-эквивалента в растениях (5,2 г) и содержанием СО₂-эквивалента в атмосфере устройства (1,12 г), равной 6,32 г СО₂-эквивалента. Разница составила 0,09 г или 1,4 %, что можно рассматривать как статистическую погрешность. В ранее проведенных исследованиях, в зависимости от используемой почвы и растений, расхождения в балансе СО₂ варьировали в пределах 2–5,5 %.

Заключение

Устройство демонстрирует возможность проведения расчетов баланса CO_2 в системе «почва – растение – атмосфера» и может быть использовано для продолжительных наблюдений для широкого спектра сельскохозяйственных культур, в том числе для учета потенциальной и фактической углеродпоглотительной способности компонентов агроэкосистем. Также устройство дает возможность оценивать влияние различных средств, включая удобрения, пестициды и стимуляторы роста, используемых в сельском хозяйстве, на углеродсеквестрирующую способность растений и почв.

СПИСОК ЛИТЕРАТУРЫ

- 1. Галассо Э. Д., Магнусон Дж. А. Система и способ переработки парниковых газов. Патент РФ № 2640616, 10.01.2018.
- 2. Хохлов А., Мельников Ю. Угольная генерация: новые вызовы и возможности // Центр энергетики Московской школы управления СКОЛКОВО: электронный журнал, 2019. URL: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Coal_generation_2019.01.01_Rus.pdf.
 - 3. Архипов А. С. Способ утилизации парникового газа. Патент РФ № 2774890, 24.06.2022.
- 4. Переверзева С. А., Коносавский П. К., Тудвачев А. В. и др. Захоронение промышленных выбросов углекислого газа в геологические структуры // Вестник Санкт-Петербургского университета. 2014. Вып. 1(7). С. 5–21.
- 5. Smith P. Land use change and soil organic carbon dynamic // Nutrient Cycling in Agroecosystems, 2008. No. 81. Pp. 169–178. DOI: https://doi.org/10.1007/s10705-007-9138-y
- 6. *Dyson F. J.* Can we control the carbon dioxide in the atmosphere? // Energy. 1977. Vol. 2. No. 3. Pp. 287–291. DOI: https://doi.org/10.1016/0360-5442(77)90033-0
- 7. *Abdullahi A.Ch.*, *Siwar Ch.*, *Shaharudin M.I.*, *Anizan I.* Carbon Sequestration in Soil: The Opportunities and Challenges // InTech. 2018. P. 196. DOI: 10/5772/intechopen.79347
- 8. Занилов А. Х., Дударов З. И., Адаев Н. Л. и др. Устройство для учета CO_2 в системе почва-растение-атмосфера. Патент РФ 2804124, 26.09.2023.

REFERENSIS

- 1. Galasso E.D., Magnuson D.A. System and method of greenhouse gas processing. Patent of the Russian Federation RU 2640616. 2018 Jan 10. (In Russian)
- 2. Khokhlov A., Melnikov Yu. *Ugol'naya generaciya: novye vyzovy i vozmozhnosti. Centr energetiki Moskovskoj shkoly upravleniya SKOLKOVO* [Internet]. 2019. Available from: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Coal_g eneration_2019.01.01_Rus.pdf. (In Russian)
- 3. Arkhipov A.S. Method for greenhouse gas utilization. Patent of the Russian Federation RU 2774890. 2022 Jun 24. (In Russian)
- 4. Pereverzeva S.A., Konosavsky P.K., Tudvachev A.V. et.al. Disposal of industrial carbon dioxide emissions into geological structures. *Bulletin of St. Petersburg University*. 2014. No. 1(7). Pp. 5–21. (In Russian)
- 5. Smith P. Land use change and soil organic carbon dynamic. Nutrient Cycling in Agroecosystems. 2008. No. (81). Pp. 169–178. DOI: https://doi.org/10.1007/s10705-007-9138-y
- 6. Dyson F.J. Can we control the carbon dioxide in the atmosphere? Energy. 1977. No. 2(3). Pp. 287–291. DOI: https://doi.org/10.1016/0360-5442(77)90033-0
- 7. Abdullahi A.C., Siwar C., Shaharudin M.I. et.al. Carbon Sequestration in Soils: The Opportunities and Challenges. InTech, 2018. P. 196. DOI: 10/5772/intechopen.79347
- 8. Zanilov A.Kh., Dudarov Z.I., Adaev N.L. et al. Device for accounting for CO2 in the soil-plant-atmosphere system. Patent of the Russian Federation RU 2804124. 2023 Sep 26. (In Russian)

Информация об авторах

Альтудов Юрий Камбулатович, д-р техн. наук, д-р экон. наук, профессор, и.о. ректора Кабардино-Балкарского государственного университета им. Х. М. Бербекова;

360004, Россия, г. Нальчик, ул. Чернышевского, 173;

ORCID: https://orcid.org/0009-0005-2520-8267

Дударов Залим Исламович, инженер-исследователь Центра геофизики и чрезвычайных ситуаций, Кабардино-Балкарский государственный университет им. Х. М. Бербекова;

360004, Россия, г. Нальчик, ул. Чернышевского, 173;

zalim-dudar@yandex.ru, ORCID: https://orcid.org/0000-0001-5346-363X

Занилов Амиран Хабидович, канд. с/х наук, ст. науч. сотр. Центра декарбонизации АПК и региональной экономики, Кабардино-Балкарский государственный университет им. Х. М. Бербекова; 360004, Россия, г. Нальчик, ул. Чернышевского, 173;

amiran78@inbox.ru, ORCID: https://orcid.org/0009-0002-8635-6501

Information about the authors

Altudov Yuri Kambulatovich, Doctor of Technical Sciences, Doctor of Economic Sciences, Professor, Acting Rector of Kabardino-Balkarian State University named after Kh.M. Berbekov;

360004, Russia, Nalchik, 173 Chernyshevsky street;

ORCID: https://orcid.org/0009-0005-2520-8267

Dudarov Zalim Islamovich, Research Engineer of the Center of Geophysics and Emergency Situations, Kabardino-Balkarian State University named after Kh.M. Berbekov;

360004, Russia, Nalchik, 173 Chernyshevsky street;

zalim-dudar@yandex.ru, ORCID: https://orcid.org/0000-0001-5346-363X

Zanilov Amiran Khabidovich, Candidate of Agricultural Sciences, Senior Researcher of the Center of Decarbonization of the Agro-Industrial Complex and Regional Economy, Kabardino-Balkarian State University named after Kh.M. Berbekov;

360004, Russia, Nalchik, 173 Chernyshevsky street;

amiran78@inbox.ru, ORCID: https://orcid.org/0009-0002-8635-6501