COMPUTER DESIGN OF STREAM NETWORKS OF P-th OPTIMALITY RANK

V.Ch. KUDAEV, M.B. ABAZOKOV

Institute of Computer Science and Problems of Regional Management – branch of Federal public budgetary scientific establishment "Federal scientific center "Kabardin-Balkar Scientific Center of the Russian Academy of Sciences" 360000, KBR, Nalchik, 37-a, I. Armand St. E-mail: iipru@rambler.ru

A method for reducing the dimension of the synthesis problem of a stream network of the P-th rank of optimality is proposed. The method is based on the construction and use in the process of optimization of a chain of basic graphs (BG), on which a stream network of minimum cost is synthesized, having various degrees of vertices, so that synthesis of a network of rank R on a dense base graph (DBG) is replaced by the solution of the synthesis problem on a loose BG (LBG) with subsequent correction of the resulting network on the DBG. An extensive computational experiment was carried out, which showed the effectiveness of the proposed method - the value of the objective function (network cost) in the task of synthesizing a network of rank P according to the chain of basic graphs and directly on the DBG differ by only a fraction of a percent, and the time to solve the problem on the computer decreases about 5 times with the construction of a network of 4th rank.

Keywords: stream network, synthesis problem, economic parameters, network optimality rank, task dimensionality reduction, chain of basic graphs, computational experiment.

REFERENCES

1. Kudaev V.Ch. *Rangi ekstremumov i strukturnaya optimizatsiya bol'shikh setevykh sistem* [Ranks of extrema and structural optimization of large network systems] // News of the KBSC RAS. 2016. No. 4 (72). Pp. 15-24.

2. Kudaev V.Ch., Abazokov M.B. *Rangovaya optimizatsiya potokovykh setey* [Rank optimization of streaming networks] // Bulletin of KRAUNC. Phys.-mat. science. 2018. No 4 (24). Pp. 178-185.

3. Bulatov V.P., Kassinskaya L.I. *Nekotoryye metody minimizatsii vognutoy funktsii na vypuklom mnogogrannike* [Some methods for minimizing a concave function on a convex polyhedron] // *Metody optimizatsii i ikh prilozheniya* [Optimization Methods and Their Applications]. Irkutsk: SEI SB AS USSR. 1987. Pp.151-172.

4. Tui H. Vognutoye programmirovaniye pri lineynykh ogranicheniyakh [Concave programming under linear constraints] // Doklady AN SSSR. 1964. T. 159. No. 1. Pp. 32-35.

5. Trubin V.A., Mikhalevich V.S., Shor N.Z. *Optimizatsionnyye zadachi proizvodstvenno-transportnogo planirovaniya* [Optimization problems of production and transport planning] // Publishing House. M.: Science, 1986. 260 p.

6. Merenkov A.P., Sennova E.V., Sumarokov S.V. and other. *Matematicheskoye modelirovaniye i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnobzheniya* [Mathematical modeling and optimization of heat, water, oil and gas supply systems]. Novosibirsk: Nauka, 1992. 407 p.

Kudaev Valery Cherimovich, leading staff scientist, Candidate of Physical and Mathematical Sciences. Institute of Computer Sciences and Problems of Regional Management of KBSC of RAS.

36000, KBR, Nalchik, 37-a, I. Armand's street.

Ph. 8-960-430-26-39

E-mail: vchkudaev@mail.ru

Abazokov Muhammed Borisovich, Ph.D. Department of Neuroinformatics and Machine Learning (NIMO) of the Institute of Applied Mathematics and Automation - a branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences.

360000, KBR, Nalchik, 89 A, Shortanov street.

Ph. 8-909-487-58-45 E-mail: Abazokov.Mukhammed@yandex.ru